(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
first(0', X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
cons/0
from/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
first(0', X) → nil
first(s(X), cons(Z)) → cons(first(X, Z))
from → cons(from)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
first(0', X) → nil
first(s(X), cons(Z)) → cons(first(X, Z))
from → cons(from)
Types:
first :: 0':s → nil:cons → nil:cons
0' :: 0':s
nil :: nil:cons
s :: 0':s → 0':s
cons :: nil:cons → nil:cons
from :: nil:cons
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
first, from
(8) Obligation:
Innermost TRS:
Rules:
first(
0',
X) →
nilfirst(
s(
X),
cons(
Z)) →
cons(
first(
X,
Z))
from →
cons(
from)
Types:
first :: 0':s → nil:cons → nil:cons
0' :: 0':s
nil :: nil:cons
s :: 0':s → 0':s
cons :: nil:cons → nil:cons
from :: nil:cons
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
first, from
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
first(
gen_0':s4_0(
n6_0),
gen_nil:cons3_0(
n6_0)) →
gen_nil:cons3_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
first(gen_0':s4_0(0), gen_nil:cons3_0(0)) →RΩ(1)
nil
Induction Step:
first(gen_0':s4_0(+(n6_0, 1)), gen_nil:cons3_0(+(n6_0, 1))) →RΩ(1)
cons(first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0))) →IH
cons(gen_nil:cons3_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
first(
0',
X) →
nilfirst(
s(
X),
cons(
Z)) →
cons(
first(
X,
Z))
from →
cons(
from)
Types:
first :: 0':s → nil:cons → nil:cons
0' :: 0':s
nil :: nil:cons
s :: 0':s → 0':s
cons :: nil:cons → nil:cons
from :: nil:cons
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0)) → gen_nil:cons3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
from
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol from.
(13) Obligation:
Innermost TRS:
Rules:
first(
0',
X) →
nilfirst(
s(
X),
cons(
Z)) →
cons(
first(
X,
Z))
from →
cons(
from)
Types:
first :: 0':s → nil:cons → nil:cons
0' :: 0':s
nil :: nil:cons
s :: 0':s → 0':s
cons :: nil:cons → nil:cons
from :: nil:cons
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0)) → gen_nil:cons3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0)) → gen_nil:cons3_0(n6_0), rt ∈ Ω(1 + n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
first(
0',
X) →
nilfirst(
s(
X),
cons(
Z)) →
cons(
first(
X,
Z))
from →
cons(
from)
Types:
first :: 0':s → nil:cons → nil:cons
0' :: 0':s
nil :: nil:cons
s :: 0':s → 0':s
cons :: nil:cons → nil:cons
from :: nil:cons
hole_nil:cons1_0 :: nil:cons
hole_0':s2_0 :: 0':s
gen_nil:cons3_0 :: Nat → nil:cons
gen_0':s4_0 :: Nat → 0':s
Lemmas:
first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0)) → gen_nil:cons3_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_nil:cons3_0(0) ⇔ nil
gen_nil:cons3_0(+(x, 1)) ⇔ cons(gen_nil:cons3_0(x))
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
first(gen_0':s4_0(n6_0), gen_nil:cons3_0(n6_0)) → gen_nil:cons3_0(n6_0), rt ∈ Ω(1 + n60)
(18) BOUNDS(n^1, INF)